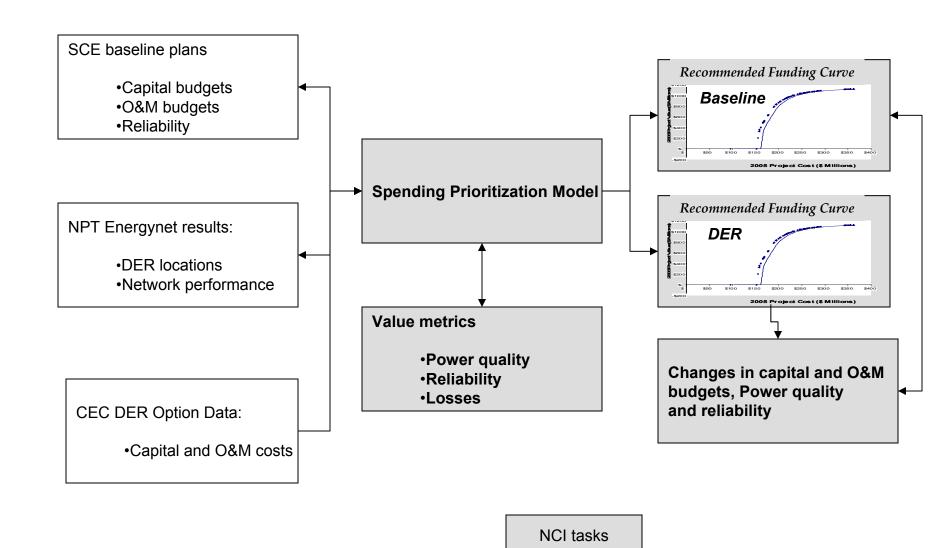


Value of Distributed Energy Resources in Distribution Infrastructure

Committee Workshop: California's Distribution Planning Process and the Role of Distributed Generation and Demand Response


April 29, 2005

Objectives – Value of Distributed Energy Resources (DER)

- Evaluate DER value as distribution upgrade strategy
 - Use metrics used for other distribution upgrade investments
- Quantify benefits of strategically sited DER on "apples to apples" basis to other distribution system upgrade options
 - Power quality
 - Reliability
 - System losses
- Asses potential impacts on:
 - Capital and O&M budgets
 - Power quality and reliability
- Provide methodology that can be applied to other systems

Project Overview

The spending prioritization model provides an integrated approach to T&D spending....

Load Relief Modeling

Relocation Modeling

Transmission Modeling

Reliability **Modeling**

T&D capital and O&M projects/programs identified

Capital "Must Do"

- Connecting customers
- Relocating facilities
- Responding to failures

Capital Load Relief

Adding capacity (e.g., substation)

Capital Reliability

- Equipment replacements
- Worst circuits

0&M "Must Do"

- Service restoration/ leak response
- Dispatch and control
- Corrective maintenance

0&M Preventive Maintenance

- Tree trimming Inspections
- Overhaul equipment
- Cathodic protection

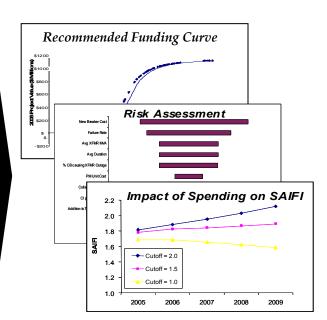
O&M Reliability

- Worst circuits
- Remediation

Integrated Spending Model

- All spending options assessed via a common, standardized, fact-based tool
 - Capital and O&M
 - Transmission and Distribution
 - Electric and Gas
- Spending options prioritized on an integrated basis based on value created

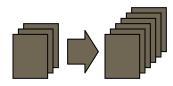
... which helps companies to assess spending options across the entire T&D organization


Key Value Measures

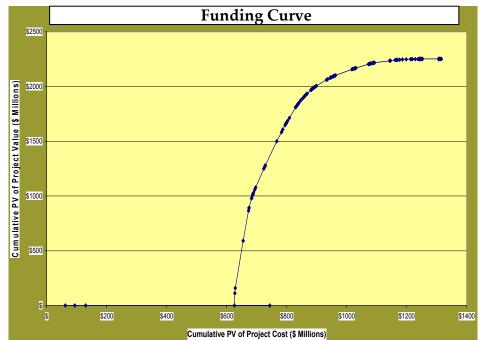
Avoided costs of:

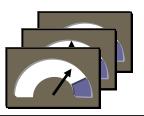
- Preventive maintenance
- Customer service interruptions
- Corrective maintenance, including collateral damage

Integrated Spending Model


- All spending options assessed via a common, standardized, fact-based tool
 - Capital and O&M
 - Transmission and Distribution
 - Electric and Gas
- Spending options prioritized on an integrated basis based on value created

We will provide an overview of how the model works.

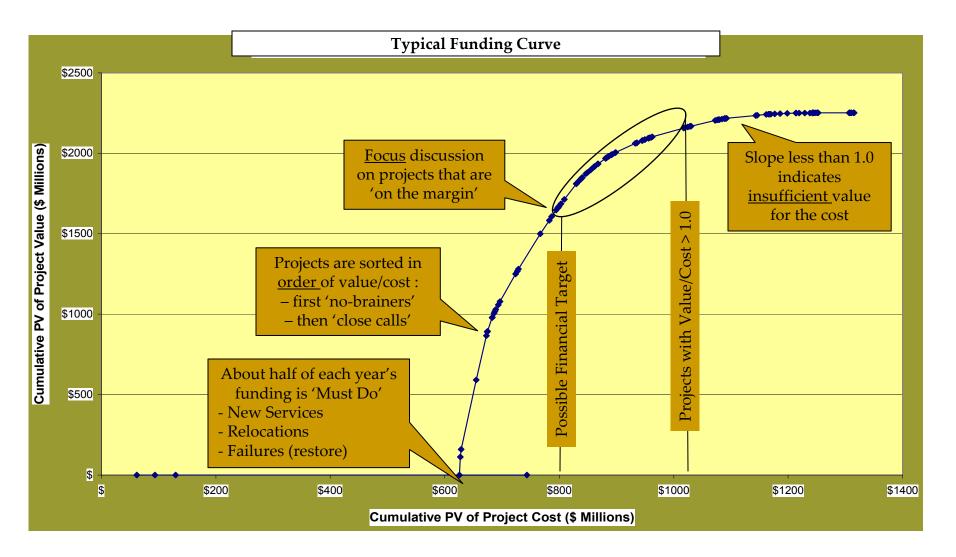

The 'decision tool' ranks each major project/option by its 'bang per buck'



Option Development

Developing cost-effective <u>alternatives</u> for possible funding

- Additions
- Upgrades
- Replacement
- Maintenance
- Standards
- Systems


Results Monitoring

Measuring & managing the drivers of the funded projects and processes

- Benchmarking
- Unit costs
- Failure rates
- Event impacts
- Value added

The goal is a standard approach to valuation and prioritization within and across business units

The model is based on a comprehensive set of general modeling parameters that impact project value and costs

Key Categories	Example Parameters					
General	Inflation, annual hours per year					
Financial	Discount rate, loaded labor costs per FTE, terminal value					
Asset Population	Customer count (residential, industrial, etc.), line miles, substation					
Customer Satisfaction & Reliability Indices	SAIFI/CAIDI (non-storm), JD Powers weightings (company image, power quality and reliability, etc.)					
Regulatory Response	Mandated costs (O&M and capital programs), reactive response cost per customer interruption					
Failures	Substation transformer failure rates, new circuit breaker failure rates, failure rates per mile OH distribution					
State-specific Modeling	Worst circuits, tree trimming, line inspection					

Additionally, there are unique parameters that are also used to analyze each different spending category (e.g., load relief, substation reliability).

Power system characteristiucs, such as the associated with outages are related to corporate value

Potential Cost to the Compa	<u>ny</u>	Typical Cost per Event
\$1 Million per year	Claims & payments	\$50 - \$100 per claim made; higher for C&I than residential
\$5 Million per year	Penalties, fines, (PBR-like)	\$10 - \$50 per customer out
\$10 Million per year	Outage restoration & collateral damage	\$500-\$100,000 per outage
\$25 Million per year	Major event audits, mandated programs, remediations, reporting	\$10,000-\$100,000 per MWH \$50-\$200 per customer out
\$25 Million per year	Adjustments to rate base and allowed rate of return	\$10,000-\$100,000 per MWH

Work task summary

- 1. Develop investment analysis roadmap
 - Integrate DER options into asset spending model frameowrk
 - Coordinate data exchanges with NPT
- 2. Develop performance metrics and criteria
 - Develop value metrics for power quality
- 3. Develop DER sub-models (DG, DR, and storage)
 - Link costs, power system impacts and value
- 4. Develop baseline budgets
- 5. Develop portfolio of spending options

Schedule

Task		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
1	Analysis roadmap									
2	Performance metrics									
3	DER sub-models									
4	Baseline budgets									
5	DER portfolio plan									
6	Reporting									

Key project staff contact information:

Craig McDonald Gene Shlatz Warren Wang cmcdonald@navigantconsulting.com gshlatz@navigantconsulting.com wwang@navigantconsulting.com 484-437-2487 802-865-2261 818-662-5726

